The Decision Maker's Handbook to Data Science: AI and Data Science for Non-Technical Executives, Managers, and Founders

$42.40


Brand Stylianos Kampakis
Merchant Amazon
Category Books
Availability In Stock
SKU B0CVDQK34L
Age Group ADULT
Condition NEW
Gender UNISEX
Google Product Category Media > Books
Product Type Books > Subjects > Science & Math > Mathematics > Applied > Probability & Statistics

About this item

The Decision Maker's Handbook to Data Science: AI and Data Science for Non-Technical Executives, Managers, and Founders

Data science is expanding across industries at a rapid pace, and the companies first to adopt best practices will gain a significant advantage. To reap the benefits, decision makers need to have a confident understanding of data science and its application in their organization. This third edition delves into the latest advancements in AI, particularly focusing on large language models (LLMs), with clear distinctions made between AI and traditional data science, including AI's ability to emulate human decision-making. Author Stylianos Kampakis introduces you to the critical aspect of ethics in AI, an area of growing importance and scrutiny. The narrative examines the ethical considerations intrinsic to the development and deployment of AI technologies, including bias, fairness, transparency, and accountability. You’ll be provided with the expertise and tools required to develop a solid data strategy that is continuously effective. Ethics and legal issues surrounding data collection and algorithmic bias are some common pitfalls that Kampakis helps you avoid, while guiding you on the path to build a thriving data science culture at your organization. This updated edition also includes plenty of case studies, tools for project assessment, and expanded content for hiring and managing data scientists. Data science is a language that everyone at a modern company should understand across departments. Friction in communication arises most often when management does not connect with what a data scientist is doing or how impactful data collection and storage can be for their organization. The Decision Maker’s Handbook to Data Science bridges this gap and readies you for both the present and future of your workplace in this engaging, comprehensive guide. What You Will Learn Integrate AI with other innovative technologies - Explore anticipated ethical, regulatory, and technical landscapes that will shape the future of AI and data science - Discover how to hire and manage data scientists - Build the right environment in order to make your organization data-driven Who This Book Is For Startup founders, product managers, higher level managers, and any other non-technical decision makers who are thinking to implement data science in their organization and hire data scientists. A secondary audience includes people looking for a soft introduction into the subject of data science. Data science is expanding across industries at a rapid pace, and the companies first to adopt best practices will gain a significant advantage. To reap the benefits, decision makers need to have a confident understanding of data science and its application in their organization. This third edition delves into the latest advancements in AI, particularly focusing on large language models (LLMs), with clear distinctions made between AI and traditional data science, including AI's ability to emulate human decision-making. Author Stylianos Kampakis introduces you to the critical aspect of ethics in AI, an area of growing importance and scrutiny. The narrative examines the ethical considerations intrinsic to the development and deployment of AI technologies, including bias, fairness, transparency, and accountability. You’ll be provided with the expertise and tools required to develop a solid data strategy that is continuously effective. Ethics and legal issuessurrounding data collection and algorithmic bias are some common pitfalls that Kampakis helps you avoid, while guiding you on the path to build a thriving data science culture at your organization. This updated edition also includes plenty of case studies, tools for project assessment, and expanded content for hiring and managing data scientists. Data science is a language that everyone at a modern company should understand across departments. Friction in communication arises most often when management does not connect with what a data scientist is doing or how impactful data collection and storage can be for their organization. The Decision Maker’s Handbook to Data Science bridges this gap and readies you for both the present and future of your workplace in this engaging, comprehensive guide. Dr. Stylianos (Stelios) Kampakis is a data scientist who lives and works in London, UK. He holds a PhD in Computer Science from University College London, as well as an MSc in Informatics from the University of Edinburgh. He also holds degrees in Statistics, Cognitive Psychology, Economics and Intelligent Systems. He is a member of the Royal Statistical Society and an honorary research fellow in the UCL Centre for Blockchain Technologies. He has many years of academic and industrial experience in all fields of data science like statistical modelling, machine learning, classic AI, optimization and more. Throughout his career, Stylianos has been involved in a wide range of projects: from using deep learning to analyze data from mobile sensors and radar devices, to recommender systems, to natural lan

Brand Stylianos Kampakis
Merchant Amazon
Category Books
Availability In Stock
SKU B0CVDQK34L
Age Group ADULT
Condition NEW
Gender UNISEX
Google Product Category Media > Books
Product Type Books > Subjects > Science & Math > Mathematics > Applied > Probability & Statistics

Compare with similar items

Two of a Kind...

Golf Scorecard Book: 100 Sheet Golf Scor...

Travel Like a Local- Cape Town South Afr...

BLACKSTONE RECIPE COOKBOOK FOR GRIDDLE A...

Price $14.99 $6.95 $12.37 $15.99
Brand T.B. Markinson Tooxy Books Michele Olieslager Prescott Wyatt
Merchant Amazon Amazon Amazon Amazon
Availability In Stock In Stock In Stock In Stock